March 2024 Newsletter
Upcoming Events
April 8-12, 2024: Machine Learning Force Fields
April 22-26, 2024: Learning Collective Variables and Coarse Grained Models
April 29-May 3, 2024: New Approaches to Ecological Dynamics of Microbial Communities
May 13-17, 2024: Data Sciences for Mesoscale and Macroscale Materials Models
June 6-7, 2024: Career Paths in the Mathematical Sciences
June 17-21, 2024: The Architecture of Green Energy Systems: Thy Underlying Problem and Its Challenges
June 26-28, 2024: Mathematical and Statistical Foundations of Digital Twins
July 8-12, 2024: Two-Dimensional Random Geometry
July 15-19, 2024: AI+Science Summer School 2024
August 5-9, 2024: Computational Imaging
August 19-21, 2024: The Architecture of Green Energy Systems: Next Steps
August 26-30, 2024: Challenges in Neuroimaging Data Analysis
Accepting Applications for the Summer 2024 Long Program: The Architecture of Green Energy
The Summer 2024 Long Program (June 17 - August 23, 2024) is accepting applications. This program will focus on how mathematical modeling can help answer questions regarding the impact of green (low carbon) energy on society and the ways in which financial incentives and regulations and infrastructure changes can enhance outcomes and accelerate the transition to a green electricity system. It will identify the ways in which mathematical tools can inform and shape appropriate public and private investments and decisions, and navigate the trade-offs encountered in moving to a more sustainable economy. Reports from the Intergovernmental Panel on Climate Change and other national and international scientific advisory bodies are spurring governments to make announcements about net zero commitments. The transition to economies with zero carbon will require substantial investment and deployment of new technologies for providing, transporting, storing and consuming green energy. It will also require institutional changes to manage an orderly and just green energy transition. This transition is happening very slowly due to technical, socio-economic, and political constraints. There is also uncertainty and complexity due to the wide range of actors shaping the energy transition and the interdependencies across sectors, infrastructures, and countries. Energy providers have been slow to increase renewable energy capacity and infrastructure at the rates required to keep global temperature rise in line with the goals of the Paris Agreement, for a range of reasons including their institutional incentives, and the changing policy and international environment. There is also increasing evidence that some of the policies and decisions that have already been made have imposed a greater burden on vulnerable and marginalized parts of society. In short, recent research across a range of disciplines has helped to understand the role and relationships across different institutions, drivers, and systems in failing to deliver the pace of change required in the energy system in a just manner and what can be done to speed it up. However, insufficient attention has been paid to the formal application of mathematics in this setting of complex systems with multiple sources of uncertainty and variability. This program is intended to initiate the development of a core body of research that will aim to provide a systematic framework or set of frameworks for analyzing some of these problems. It will bring together leading researchers who have demonstrated an interest and willingness to work at the boundary of different disciplines, but for whom face-to-face encounters are difficult to arrange due to disciplinary diversity and separation.
This Long Program is organized by Laura Diaz Anadon (University of Cambridge), Michael C. Ferris (University of Wisconsin-Madison), Dennice F. Gayme (Johns Hopkins University), and Andy Philpott (University of Auckland).
Apply here for The Architecture of Green Energy
Accepting Applications for the Fall 2024 Long Program: Statistical Methods and Mathematical Analysis for Quantum Information Science
The Fall 2024 Long Program (September 16 - December 13, 2024) is accepting applications. Quantum information science is a rapidly developing and broad field of research. It has made significant progress over the last decade, including the development of many promising applications such as efficient quantum computational algorithms, secure quantum communication protocols, and ultra-sensitive quantum sensors (to name just a few). Besides practical applications, quantum information science also sheds light on fundamental physics questions, including efficient descriptions of many-body systems, entanglement characterization of topological quantum systems, and quantum information scrambling of many-body systems. Novel mathematical tools and statistical models play a crucial role in investigating quantum systems. However, there are still many important open questions in quantum information science, which urgently need novel mathematical tools and statistical models. The aim of this program is to bring experts with different backgrounds of mathematics, control, statistics, physics, material, and computer science together, to spur transformational change in quantum information science. This Long Program is organized by Aashish Clerk (University of Chicago), Liang Jiang (University of Chicago), Mazyar Mirrahimi (Inria Paris), and Pierre Rouchon (Mines Paris-PSL).
Apply here for Statistical Methods and Mathematical Analysis for Quantum Information Science
Accepting Applications for the Spring 2025 Long Program: Uncertainty Quantification and AI for Complex Systems
The Spring 2025 Long Program (March 3 - May 23, 2025) is accepting applications. The field of Uncertainty Quantification (UQ) has broad applications in science and engineering and provides a computational framework for quantifying input and response uncertainties, making model-based predictions and their inferences. As science and technology advance, UQ problems become more complex and diverse, requiring many concepts and tools from mathematics, statistics, machine learning, optimization, and advanced computing techniques. The fast development of Artificial Intelligence (AI) has benefited many fields, including UQ. Specifically, new AI and machine learning algorithms are applied to solve larger-scale and more complicated UQ problems. UQ, together with the advancements in AI and machine learning, has the potential to drive new scientific discoveries and enable engineers to design more robust and reliable systems. This long program will focus on the newest development of UQ methodologies and how they can improve AI systems and provide solutions to modeling complex systems. It will also give an outlook on future UQ directions and challenges. Through all the activities proposed, the program will bring together interested parties, researchers, practitioners, and students from different areas of UQ, promote communication, and further break down the barriers between disciplines. The program also has a significant mentoring component, which connects researchers and students at different career stages. This Long Program is organized by Mihai Anitescu (Argonne National Laboratory and University of Chicago), Xinwei Deng (Virginia Tech), Robert B. Gramacy (Virginia Tech), Fred Hickernell (Illinois Institute of Technology), Roshan Joseph (Georgia Tech), Lulu Kang (University of Massachusetts-Amherst), and C. Devon Lin (Queen's University), and Guang Lin (Purdue University).
Apply here for Uncertainty Quantification and AI for Complex Systems
2024 Career Paths in the Mathematical Sciences
The Career Paths in the Mathematical Sciences conference will be held June 6-7 at IMSI, on the campus of the University of Chicago. The conference is co-organized with the Institute for Mathematical Applications and the Math Alliance, a national community of faculty mentors in the mathematical sciences working together to increase the representation of minority students and professionals in quantitative fields at all levels. The audience for the conference consists of undergraduates who are planning to enter graduate programs in the mathematical sciences in the fall of 2025, along with faculty who have agreed to mentor those students through the process of applying to graduate programs. The rapidly changing landscape in these fields makes it critical that mentors and their students have the most up-to-date information concerning opportunities for graduate training and future career opportunities. The workshop will consist of plenary lectures, panel discussions, active-learning modules, and networking opportunities. Mentors must nominate students to attend. The organizing committee will begin considering applications to attend from students and faculty mentors in mid-April.
IMSI Requests Proposals to Host GROW in 2026 and 2027
The GROW Steering Committee is requesting proposals from groups wishing to host GROW in 2026 and/or 2027. GROW is intended to provide support and encouragement to undergraduate students considering going to graduate school in the mathematical sciences and to help build a profession in which gender identity is not a barrier to participation. The conference runs annually on a weekend in the fall, and is open to undergraduates from U.S. colleges and universities, including international students. Hosts are typically departments or groups of departments offering Ph.D. programs in the mathematical sciences. Organizing committees are responsible for finding the funding needed for GROW. Proposals to host GROW should include the following components:
Identify the host organization and describe the facilities available for the workshop.
List the members of the organizing committee, and describe the relevant experience and intended responsibilities of individual members.
Describe the organizing committee’s vision and goals for GROW.
Indicate whether you are requesting to host GROW in 2026, 2027, or both. In general, the steering committee has a preference for proposals to host the event for two successive years.
Describe tentative programming for GROW: list possible speakers, panel topics and potential panelists, and possible social and networking activities.
Describe plans to obtain funding for the conference, including any commitments of funding already obtained. Funding is typically needed for travel and accommodations for speakers, panelists, and participants, refreshments, and a banquet.
Proposals and questions may be sent to the steering committee at [email protected].
Copyright © 2024. All rights reserved.
IMSI acknowledges support from the National Science Foundation
(Grant No. DMS-1929348)
Institute for Mathematical and Statistical Innovation
1155 E. 60th Street, Chicago, IL 60637 |